compound was crystallized by slow evaporation from ethanol (yield 70%, m.p. 423 K).

Mo $K\alpha$ radiation

Cell parameters from 40

 $0.88 \times 0.58 \times 0.36$ mm

 $\lambda = 0.71073 \text{ Å}$

reflections

 $\theta = 5.39 - 12.45^{\circ}$

 $\mu = 0.075 \text{ mm}^{-1}$

T = 293(2) K

 $\theta_{\rm max} = 27.50^{\circ}$ $h = -24 \rightarrow 24$

 $k = -17 \rightarrow 1$

 $l = -1 \rightarrow 12$

3 standard reflections

every 97 reflections intensity decay: <3%

Prism

Yellow

Crystal data

C₂₆H₃₆N₄O₂ $M_r = 436.59$ Monoclinic $P2_1/c$ a = 19.033 (2) Å b = 13.661 (1) Å c = 9.546 (1) Å $\beta = 95.72$ (1)° V = 2469.7 (4) Å³ Z = 4 $D_x = 1.174$ Mg m⁻³ D_m not measured

Data collection

Siemens P4 diffractometer $\theta/2\theta$ scans Absorption correction: none 7183 measured reflections 5655 independent reflections 3065 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.018$

Refinement

 $\Delta \rho_{\rm max} = 0.173 \ {\rm e} \ {\rm \AA}^{-3}$ Refinement on F^2 $\Delta \rho_{\rm min}$ = -0.157 e Å⁻³ $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.136$ Extinction correction: S = 0.908SHELXL93 (Sheldrick, 5655 reflections 1993) Extinction coefficient: 423 parameters 0.0037(7) All H atoms refined $w = 1/[\sigma^2(F_o^2) + (0.0728P)^2]$ Scattering factors from where $P = (F_{\rho}^2 + 2F_{c}^2)/3$ International Tables for $(\Delta/\sigma)_{\rm max} < 0.001$ Crystallography (Vol. C)

Table 1. Selected geometric parameters (Å, °)

C1-021	1.361 (2)	C20—O27	1.360 (2)
C2—C23	1.460 (2)	C23—N24	1.266 (2)
N8-C13	1.452 (2)	N24C25	1.459 (2)
N8-C9	1.459 (2)	C29-N30	1.266 (3)
C9-C10	1.514 (2)	N30-C31	1.455 (3)
C12-C13	1.518 (2)		
O21-C1-C6	119.14 (13)	O27-C20-C15	118.9 (2)
021—C1—C2	120.72 (13)	O27-C20-C19	121.19 (15)
C13-N8-C7	111.30 (14)	N24C23C2	122.9 (2)
C9-N8-C7	111.27 (13)	C23-N24-C25	118.5 (2)
C10-N11-C14	111.05 (15)	N30-C29-C19	123.2 (2)
C12N11C14	111.17 (14)	C29-N30-C31	117.6 (2)

Table 2. Hydrogen-bonding geometry (Å, °)

<i>D</i> —H···A	D—H	H <i>A</i>	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
O21-H21···N24	0.97 (2)	1.71 (2)	2.604 (1)	151 (2)
O27—H27···N30	0.97 (2)	1.70 (2)	2.616 (1)	156 (2)

Data collection: XSCANS (Siemens, 1994). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL93.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1317). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Aratake, Y., Okawa, H., Asato, E., Sakiyama, H., Kodera, M., Kida, S. & Sakamoto, M. (1990). J. Chem. Soc. Dalton Trans. pp. 2941– 2945.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Palmer, G., Babcock, G. T. & Vickery, L. E. (1976). Proc. Natl Acad. Sci. USA, 73, 2206–2210.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1994). XSCANS User's Manual. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1998). C54, 645-647

endo-endo-anti Diels–Alder Diadduct of Hexachlorocyclopentadiene with 1,6-Dioxacyclodeca-3,8-diene

J. GABRIEL GARCIA^a[†] AND FRANK R. FRONCZEK^b

^aDepartment of Chemistry, Clark Atlanta University, Atlanta, GA 30314, USA, and ^bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA. E-mail: garcia@oberon.cmc.uab.edu

(Received 6 May 1997; accepted 20 October 1997)

Abstract

There are two independent molecules of *endo-endo-anti*-1,7,8,9,10,16,17,18,19,19,20,20-dodecachloro-4,13-dioxapentacyclo[14.2.1.1^{7,10}.0^{2,15}.0^{6,11}]icosa-8,17-diene, $C_{18}H_{12}Cl_{12}O_2$, in the unit cell with different conformations. In one, the ten-membered ring adopts a chair-chair conformation, and in the other, it adopts a distorted chair-chair conformation. There are near-zero torsion angles at the ring-fusion bonds in both forms [1.5 (6) and 8.1 (5)° in the distorted chair-chair molecule, and 2.9 (5) and 2.5 (5)° in the distorted chair-chair molecule]. The torsion angles about the bonds comprising the sides of the chair-chair are 158.5 (3), -160.7 (3), -146.8 (4) and 155.7 (3)°, and those of the distorted chair-chair are 148.0 (3), -146.8 (3), 175.7 (3) and -52.3 (4)°. The norbornene C=C bonds have lengths

[†] Present address: Center for Macromolecular Crystallography, The University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA.

of 1.314 (6) and 1.305 (6) Å in the chair-chair molecule, and 1.309 (6) and 1.318 (6) Å in the other. The four dioxolane-system O—C bonds have average lengths of 1.411 (5) and 1.421 (5) Å in the two independent molecules.

Comment

The crystal structures of a number of Diels–Alder substituted cycloocta(e)nes and cyclohexa(e)nes have been determined in our laboratory over the past few years (Garcia & McLaughlin, 1991; Garcia, Fronczek & McLaughlin, 1991*a,b,c*, 1992*a,b*; Garcia, McLaughlin & Fronczek, 1991*a,b*; Li *et al.*, 1992; Garcia *et al.*, 1994; Garcia & Fronczek, 1995*a,b*). The crystal structure determination of the title compound, (I), is part of an ongoing program of structure analysis of some new derivatives bearing the dioxacyclodecane moiety, related to a study of conformation-dependent $\pi-\sigma-\pi$ electronic interactions (Garcia, Fronczek & McLaughlin, 1991*a*; Garcia & McLaughlin, 1991; Garcia & Fronczek, 1995*a,b*).

Structural data for the title compound are in agreement with those of related compounds (Garcia, McLaughlin & Fronczek, 1991*a*; Garcia, Fronczek & McLaughlin, 1992*b*; Li *et al.*, 1992; Garcia & Fronczek, 1995*a*,*b*; Ermer *et al.*, 1973).

The dioxacyclodecane rings have chair-chair (molecule A) and distorted chair-chair (molecule B) conformations (Hendrickson, 1967a), with bond angles designated as follows: θ_1 C2—C1—C8, C6—C5—C4; θ_2 C1—C8—O2, C5—C4—O1; θ_3 C8—O2—C7, C4— O1—C3; θ₄ O2—C7—C6, O1—C3—C2; θ₅ C7— C6-C5, C3-C2-C1. The values of these parameters are, for molecules A and B respectively: $\theta_1 =$ 119.0 (3), 116.6 (3)° and 119.3 (3), 118.9 (3)°; $\theta_2 =$ 111.9 (3), 105.5 (3)° and 108.2 (3), 108.0 (3)°; $\theta_3 =$ 115.6 (3), 116.4 (3)° and 114.2 (3), 115.1 (3)°; $\theta_4 =$ 107.5 (3), 110.8 (4)° and 115.9 (3), 111.4 (3)°; $\theta_5 =$ 118.2 (3), 119.6 (4)° and 119.5 (3), 119.2 (3)°. These values are distorted from the theoretical value (Hendrickson, 1967b) of the long-chair form, $\theta_1 = \theta_2 = \theta_3 =$ $\theta_4 = \theta_5 = 118^\circ$, and are distorted from the experimental values $\theta_1 = \theta_2 = \theta_5 = 118^\circ$ and $\theta_3 = \theta_4 = 115^\circ$ (Hendrickson, 1967b). Torsion-angle designations are: ω_1 C3—C2—C1—C8, C7—C6—C5—C4; ω_2 C2— C1—C8—O2, C6—C5—C4—O1; ω_3 C1—C8—O2— C7, C5—C4—O1—C3; ω_4 C8—O2—C7—C6, C4O1—C3—C2; ω_5 O2—C7—C6—C5, O1—C3—C2— C1. The values for molecules *A* and *B* are respectively: $\omega_1 = 1.5$ (6), 2.9 (5)° and 8.1 (5), 2.5 (5)°; $\omega_2 = 70.4$ (5), 69.9 (4)° and -55.5 (4), 82.5 (4)°; $\omega_3 = -146.8$ (4), -160.7 (3)° and 175.7 (3), -146.8 (3)°; $\omega_4 = 155.7$ (3), 158.5 (3)° and -52.3 (4), 148.0 (3)°; $\omega_5 = -83.3$ (4), -69.9 (5)° and -50.3 (5), -50.8 (5)°. These are distorted from those of the symmetrical long-chair conformation (of cyclodecane), having torsion angles of $\omega_1 = \pm 0$, $\omega_2 = \pm 112.2$, $\omega_3 = \pm 72.7$, $\omega_4 = \pm 72.7$ and $\omega_5 = \pm 112.2^\circ$ (Hendrickson, 1967*a*).

Fig. 1. One of the two independent molecules, with ellipsoids at the 30% probability level. H atoms have been omitted for clarity.

Experimental

Crystals suitable for analysis were prepared by reacting 1,6-dioxacyclodeca-3,8-diene (Reppe, 1955) with hexachlorocyclopentadiene, following a modification of the method of Akhtar *et al.* (1968). Crystals (m.p. 557–559 K) were grown by slow cooling of a *p*-xylene solution.

Crystal data

$C_{18}H_{12}Cl_{12}O_2$	Mo $K\alpha$ radiation
$M_r = 685.73$	$\lambda = 0.71073 \text{ Å}$
Monoclinic	Cell parameters from 25
C2/c	reflections
a = 26.831 (2) Å	$\theta = 5 - 11^{\circ}$
<i>b</i> = 15.2944 (7) Å	$\mu = 1.33 \text{ mm}^{-1}$
c = 24.952(1)Å	T = 296 K
$\beta = 94.00(1)^{\circ}$	Fragment
$V = 10214(1) \text{ Å}^3$	$0.32 \times 0.32 \times 0.13$ mm
Z = 16	Colorless
$D_x = 1.783 \text{ Mg m}^{-3}$	
D_m not measured	
Data collection	
Enraf–Nonius CAD-4	6584 reflections with
diffractometer	$I > \sigma(I)$
$\theta/2\theta$ scans	$R_{\rm int} = 0.034$
Absorption correction:	$\theta_{\rm max} = 25^{\circ}$
ψ scans (North <i>et al.</i> ,	$h = 0 \rightarrow 31$
1968)	$k = 0 \rightarrow 18$
$T_{\rm min} = 0.74, T_{\rm max} = 0.84$	$l = -29 \rightarrow 29$

9529 measured reflections 8968 independent reflections	3 standard reflections frequency: 120 min intensity decay: 0.2%
Refinement	
Refinement on F	$\Delta a = 0.44 e Å^{-3}$
R = 0.057	$\Delta \rho_{\text{max}} = 0.44 \text{ CA}$
m = 0.057	$\Delta p_{\min} = -0.29 \text{ e A}$
WR = 0.039	Extinction correction:
S = 1.243	isotropic (Zachariasen,
6584 reflections	1963)
674 parameters	Extinction coefficient:
H atoms refined isotropically	$1.9(3) \times 10^{-8}$
$w = 4F_o^2/[\sigma^2(F_o^2)]$	Scattering factors from Inter-
$+ 0.0004F_{o}^{4}$]	national Tables for X-ray
$(\Delta/\sigma)_{\rm max} = 0.028$	Crystallography (Vol. IV)

Table 1. Selected geometric parameters (Å, °)

O1A—C3A	1.419 (5)	O1B—C3B	1.397 (5)
01 <i>A</i> —C4A	1.416 (5)	O1 <i>B</i> —C4 <i>B</i>	1.417 (5)
O2A—C7A	1.423 (5)	O2B—C7B	1.413 (5)
O2A—C8A	1.424 (5)	O2 <i>B</i> —C8 <i>B</i>	1.417 (5)
C1A—C2A	1.577 (6)	C1 <i>B</i> —C2 <i>B</i>	1.576 (6)
C5A—C6A	1.585 (6)	C5B—C6B	1.576 (6)
C10A—C11A	1.314 (6)	C10B—C11B	1.309 (6)
C15A—C16A	1.305 (6)	C15B—C16B	1.318 (6)
C3AO1AC4A	115.1 (3)	C3B—O1B—C4B	116.4 (3)
C7A—O2A—C8A	114.2 (3)	C7B—O2B—C8B	115.6 (3)
Cl9A—C13A—C110A	107.2 (2)	C19B—C13B—C110B	107.3 (2)
C111A—C18A—C112A	108.3 (2)	C111 <i>B</i> —C18 <i>B</i> —C112 <i>B</i>	107.6 (2)
C8A—C1A—C2A—C3A	8.1 (5)	C8B—C1B—C2B—C3B	1.5 (6)
C9A-C1A-C2A-C12A	1.0 (4)	C9B-C1B-C2B-C12B	1.3 (4)
C4A—C5A—C6A—C7A	2.5 (5)	C4B—C5B—C6B—C7B	2.9 (5)
C14A-C5A-C6A-C17A	4 0.2 (4)	C14B-C5B-C6B-C17	B 1.0 (4)

C---H distances are in the range 0.89 (3)-1.03 (3) Å, while B_{iso} values for H atoms are in range the 1.0 (7)-6 (1) $Å^2$.

Data collection: CAD-4 Operations Manual (Enraf-Nonius, 1977). Cell refinement: CAD-4 Operations Manual. Data reduction: PROCESS in MolEN (Fair, 1990). Program(s) used to solve structure: MULTAN80 (Main et al., 1980). Program(s) used to refine structure: LSFM in MolEN. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: CIF IN in MolEN.

This research was supported (or partially supported) by a Research Centers in Minority Institutions award (#G12RR03062) from the Division of Research Resources, National Institutes of Health, and MBRS grant #GM08247. The purchase of the diffractometer was made possible by a National Science Foundation chemical instrumentation grant, which we gratefully acknowledge.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1349). Services for accessing these data are described at the back of the journal.

References

- Akhtar, I. A., Fray, G. I. & Yarrow, J. M. (1968). J. Chem. Soc. C, pp. 812-815.
- Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.

Ermer, O., Dunitz, J. D. & Bernal, I. (1973). Acta Cryst. B29, 2278-2285 Fair, C. K. (1990). MolEN. An Interactive Intelligent System for

- Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands. Garcia, J. G. & Fronczek, F. R. (1995a). Acta Cryst. C51, 468-471.
- Garcia, J. G. & Fronczek, F. R. (1995b). Acta Cryst. C51, 987-989.
- Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991a). Tetrahedron Lett. 32, 3289-3292.
- Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991b). Acta Cryst. C47, 1998-2000.
- Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991c). Acta Cryst. C47, 2009-2011.
- Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1992a). Acta Cryst. C48, 195-197.
- Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1992b). Acta Cryst. C48, 197-199.
- Garcia, J. G. & McLaughlin, M. L. (1991). Tetrahedron Lett. 32. 3292-3296.
- Garcia, J. G., McLaughlin, M. L. & Fronczek, F. R. (1991a). Acta Cryst. C47, 206-209
- Garcia, J. G., McLaughlin, M. L. & Fronczek, F. R. (1991b). Acta Cryst. C47, 451-453.
- Garcia, J. G., Morales, G. A., Fronczek, F. R. & McLaughlin, M. L. (1994). Acta Cryst. C50, 317-324.
- Hendrickson, J. B. (1967a). J. Am. Chem. Soc. 89, 7047-7061.
- Hendrickson, J. B. (1967b). J. Am. Chem. Soc. 89, 7036-7043.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Li, J., Fronczek, F. R. & McLaughlin, M. L. (1992). Acta Cryst. C48, 200-201
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Reppe, W. (1955). Justus Liebigs Ann. Chem. 596, 1-224.
- Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1998). C54, 647-649

Adenosine-5'-carboxylic Acid

G. SREEKANTA PADIYAR AND T. P. SESHADRI

Department of Physics, Indian Institute of Science, Bangalore 560 012, India. E-mail: gspadiya@physics.iisc. ernet.in

(Received 30 June 1997; accepted 24 November 1997)

Abstract

The two molecules in the asymmetric unit of adenosine-5'-carboxylic acid, $C_{10}H_{11}N_5O_5$, exist as zwitterions with N1 protonated and the carboxyl groups ionized. Both molecules are in an anti conformation with glycosyl torsion angles of -161.4(3) and $-155.5(3)^{\circ}$. The ribose moieties adopt a C3-endo-C2-exo twist conformation. The pseudo-rotation parameters are P =